A note on Kakeya sets of horizontal and SL(2)$SL(2)$ lines
نویسندگان
چکیده
We consider unions of S L ( 2 ) $SL(2)$ lines in R 3 $\mathbb {R}^{3}$ . These are the form = a , b 0 + span c d 1 $$\begin{equation*} \hspace*{5pc} (a,b,0) \mathrm{span}(c,d,1), \end{equation*}$$ where − $ad - bc 1$ show that if $\mathcal {L}$ is Kakeya set lines, then union ∪ $\cup \mathcal has Hausdorff dimension 3. This answers question Wang and Zahl. The can be identified with horizontal first Heisenberg group, we obtain main result as corollary more general statement concerning lines. established via point-line duality principle between conical combined recent work on restricted families projections to planes, due Gan, Guo, Guth, Harris, Maldague Wang. Our also for Nikodym sets associated which special case Kim.
منابع مشابه
A Note on the Kakeya Maximal Operator
In this paper we obtain an upper bound for the L2 norm for maximal operators associated to arbitrary finite sets of directions in R 2.
متن کاملKakeya sets of curves
In this paper we investigate an analogue for curves of the famous Kakeya conjecture about straight lines. The simplest version of the latter asks whether a set in R that includes a unit line segment in every direction must necessarily have dimension n. The analogue we have in mind replaces the line segments by curved arcs from a specified family. (This is a quite different problem from that con...
متن کاملthe effects of cognitive strategies- note making and underlining- on iranian efl learners’ reading comprehension
هدف از انجام این مطالعه ، بررسی اثرات استفاده از استراتژی های شناختی یعنی "نت برداری" و "زیر خط کردن" بر روی عملکرد درک مطلب زبان آموزان ایرانی می باشد. به این منظور، 60 زبان آموز دختر سال چهارم دبیرستان از طریق آزمون پیشرفت زبان انگلیسی (نلسون)، از یک جامعه آماری بزرگتر انتخاب شدند. سپس به صورت تصادفی به سه گروه که هر گروه شامل ?0 دانش آموز همسان بود، تقسیم شدند: دو گروه آزمایش(گروه "نت برداری...
15 صفحه اولKakeya Sets and the Method of Multiplicities
We extend the "method of multiplicities" to get the following results, of interest in combinatorics and randomness extraction. 1. We show that every Kakeya set (a set of points that contains a line in every direction) in F' must be of size at least qn/2". This bound is tight to within a 2 + o(1) factor for every n as q -oc, compared to previous bounds that were off by exponential factors in n. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of The London Mathematical Society
سال: 2023
ISSN: ['1469-2120', '0024-6093']
DOI: https://doi.org/10.1112/blms.12844